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A Two-Section Dua-Band Chebyshev
|mpedance Transformer

Sophocles J. Orfanidis, Member, IEEE

Abstract—We derive a two-section dual-band impedance trans-
former that matches aresistive load at two arbitrary frequencies.
The transformer is equivalent to a two-section Chebyshev trans-
former whose parameter shave been adjusted to achievereflection-
less notches at the two desired frequencies.

Index Terms—Chebyshev transformer, dual

impedance matching, transmission line.
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|. INTRODUCTION

ECENTLY, there has been some interest in designing

electrically short two-section dual-band impedance
transformers that match aload at a given frequency f; and its
first harmonic 2 f; [1], [2].

Inthisletter, we solve the more general problem of designing
atwo-section transformer that matches aload at two arbitrary
frequencies, say, f1 and f». We show that the transformer is
equivalent to a two-section Chebyshev transformer whose pa
rameters have been adjusted to achieve reflectionless notches at
the two frequencies f1, fo. When fo = 2f;, we recover the re-
sults of [1] and [2].

Possible applications are the matching of dual-band antennas
operating in the cellular/PCS, GSM/DCS, WLAN, GPS, and
ISM bands, and other dual-band RF applications. An M -sec-
tion quarter-wavelength Chebyshev transformer has reflection
response (into the main ling) given in terms of the order-AM
Chebyshev polynomial T (z) asfollows [3]-{7]:

C%Tj%l (z)
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where 6 isthe common phase length 6 = 31 of al the segments

and f, isthefrequency at which the segments are quarter-wave-
length. The parameter ¢? is defined by
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The reflection response |I'(f)]? has a broad reflectionless

band of width Af symmetrically placed about f, and related
to the parameter x¢ through
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Fig. 1. Two-section impedance transformer.

The reflectionless band is mapped onto the interval —1 <
x < 1 over which the Chebyshev polynomia T () has M
zeros and exhibits equiripple behavior. The value of the reflec-
tion response over thisband is attenuated relative to its value at
dc by at least the amount (in decibels)

M)

4
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A = 10log,, <

The design of an M -section transformer specifies two of the
three parameters { M, A f, A} and determines the third.

From the zeros of the numerator and denominator of |I'( f)|?
one may determinethereflection responseitself, I'( f), and from
it, through a “layer peeling” procedure, extract the reflection
coefficients at the segment junctions, and then the characteristic
impedances of the segments. The design details may be found
in[7].

Il. DESIGN METHOD

A two-section transformer is depicted in Fig. 1. We will see
that the desired dual-band transformer is essentially given by
(D—(4) with M = 2, where the second-order Chebyshev poly-
nomial is 73(z) = 22% — 1. The two zeros of T»(x) are made
to correspond to the two frequencies f1, fo.

The reflection coefficients at the three junctions are defined
as usual in terms of the line, segment, and load impedances 7,
Z1, 4o, Zy, (dl of which are assumed to be real -val ued)

7 - 7
T i+ Zy

77
a4+ 7y

Ly — 2o
 Zr+ 2y

P1 P2 P3 (5)

Assuming equal travel-time segments, the reflection response
may be expressed astheratio of the z-transform polynomials[7]

B(z) _ pi+p(l+pip3)z ' +pa2?

F = =
2 A(z) 1+ papr +p3)z 1 4 pip3z?

(6)

where 2! represents the two-way travel-time delay through
each section and isgiven by =1 = ¢=2/%, where § = 7 f/2 0.
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We assumethat fi < f> and definer = f»/f1. We begin by
constructing the reflection polynomial B(z) to have zeros at the
two desired frequencies f1, fo

B(z) = p1(1— 271 (1 — P27 ™
where
_Th _ 7r_f2
T T ®

Becausethe coefficientsof B(z) in (6) arereal, itszeros must
be complex conjugates of each other. This can be achieved by
choosing the quarter-wavel ength normalization frequency fy to
lie half-way between f1, fa, thatis, fo = (fi + f2)/2 = (r +
1) f1/2. Then, it follows from (8) that

51:#, Sy =161 =7 — 61. 9)
Thus, ¢27%2 = ¢29(7=%1) = ¢=%% and B(z) takesthe form
B(Z) =p; (1 _ 62j512—1) (1 _ 6—2]512—1)

=p1 (1 —2c0s28 2 L+ 272). (20

Comparing (10) with (6), we obtain the reflection coefficients
B 2p1 €0s 201
14p7
We note that the phase length 6 can be expressed either in
terms of fy or interms of f;
5= rf_ 7 [
S 2fo rH1A
Therefore, the section lengths will be quarter-wavelength at
fo and 2(r + 1)-th wavelength at f;
hlp= o M
TR T T 2tr 1)
The relationship p3 = p; is equivalent to the condition
ZyZiy = Z1Zy. From (5) and (11), we obtain
1+ p2 _ P —2p1cos 26 + 1
T—pa  rp24+2pcos26 +1°
Using theidentity cos 26; = (1 —tan? &;)/(1+tan? &) and
replacing p; interms of Z;, we obtain the equation
Z#2 4+ 73
Z: + Z3t3
where we denoted ¢; = tan ;. The solution of (14) is

p3=p1, p2= (11)

(12)

(13)

Zp70 = ZaFig = 72

Z1Zy = 73 (14)

7, = \/ig [ZL — T+ \/(ZL _ Zo)? A+ 4ti 2. 7). (15)
2t2
Once Z; is known, Z, is obtained from Z», = ZyZy/Z;.
Equations (9), (13), and (15) provide a complete solution to the
two-section transformer design problem.
Next, we show that B( z) isindeed proportional to the Cheby-
shev polynomial 75(x). Setting z = €2/, we have

2B(z) =p; (z +2 ' —2cos 261) =p1 (2 cos 26 — 2 cos 261)

26
=4p1 (Cos2 & — cos? 61) = 4p; cos? &, <% - 1)
cos? &1

=4p; cos? 6; (23:(2) cos? 6 — 1) = 4p; cos® 61 To(x).
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Fig. 2. Reflection responses are normalized to unity gain at dc. Notch
frequenciesare f1 and f> = rf;, with (&) r = 2.0, (b) 2.5, and (c) 3.5.

Therefore, B(z) = 4p; cos® §; Ta(x)z 1, where we defined
T = xgcosd and

1

V2cosé; (16)

o =



384 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 13, NO. 9, SEPTEMBER 2003

We may also show that the reflection response |I'(f)|? is
given by (1). Using the solution (15), it can be shown after
some tedious algebra that o2¢2 = 16p7sin* §;, where o2 =
(1 —p2)(1 — p3)(1 — p3) and €3 isgiven by (2). Similarly, we
have o2e? = 16p7 cos* §1. Therefore, we may write | B(2)]? =
163 cos* 6, T3 (x) = 023 T ().

On the other hand, it follows from the particular forms of the
polynomials B(z) and A(z) in (6) that |A(2)|? — | B(2)|* = o2,
or, |A(z)|? = 0% + |B(2)|? = 0*(1 + ¢3T4(x)). Therefore

BEP _
A=)

A1z (x)

NP = 1+ e2T3(x)

Thus, the reflectance is identical to that of a two-section
Chebyshev transformer. However, its interpretation as a
quarter-wavelength transformer, that is, a transformer whose
attenuation at fy is less than the attenuation at dc, is valid
only for a limited range of values of the parameter r, that is,
1 < r < 3. For this range, the parameter «( defined in (16) is
¢ > 1. Then, the corresponding bandwidth about f, can be
meaningfully defined through (3), which gives

) T Af\ _ 7r
sin <mf> =V2cos6; = V2cos <?> . (17

For 1 < » < 3, the right-hand side of (17) is always less
than unity. On the other hand, when » > 3, the parameter zq
becomes zq < 1, the bandwidth A f loses its meaning, and the
reflectance at f; becomes greater than that at dc, that is, again.
For any value of r, the attenuation or gain a f can be calculated
from (4) with M = 2. Noting that 75(z¢) = 223 —1 = tan? 61,
we have

tan* §; + e%) (18)

A = 10logy, < e

The quantity A is positivefor 1 < » < 3 or tané; > 1, and
negative for » > 3 or tand; < 1.

For the special caseof » = 3,wehaved; = n/4andtané; =
1, which gives A = 0. Also, it follows from (11) that p» =
0, which means that Z; = Z, and (14) gives Z7 = ZpZj.
The two sections combine into a single section of double length
2l; = A /4 & f1, that is, a single-section quarter wavelength

transformer, which, asiswell known, has zeros at odd multiples
of its fundamental frequency.

For thecaser = 2, wehave §; = /3 and tan §; = v/3. The
design (15) reduces to that given in [2] and the section lengths
become \; /6.

Fig. 2 shows three examples for the values » = 2, r = 2.5,
and » = 3.5. All three transform Z;, = 200 into Z, = 50 Q2.
The plotted reflectances |I'( £)|? were normalized to unity gain
at dc. The section impedances and attenuations A were

r=20, 7, =80.02 Z,=12496, A=79dB
r =25, Z,==89.02, Z,=112.33, A=29dB
r =35, Zy=112.39, Z,=8898, A=-1.7dB.

For the cases » = 2 and » = 2.5, the bandwidth A f calcu-
lated from (17) is depicted on the graphs. For the case » = 3.5,
the quantity A is negative, signifying again at f,. The section
lengths at f; werein thethreecases: A1 /6, A1 /7, and A1 /9.

I11. CONCLUSION

Using zero placement, we have derived asimple, electrically
short, two-section dual-band impedance transformer that can
match any resistive load at two arbitrary frequencies fi, f»
and have clarified its connection to the standard multisection
quarter-wavelength Chebyshev transformer.

REFERENCES

[1] Y.L.Chow and K. L. Wan, “A transformer of one-third wavelength in
two sections— For afrequency and itsfirst harmonic,” IEEE Microwave
Wireless Comp. Lett., vol. 12, p. 22, 2002.

[2] C. Monzon, “Analytical derivation of a two-section impedance trans-
former for a frequency and its first harmonic,” IEEE Microwave Wre-
less Comp. Lett., vol. 12, p. 381, 2002.

[3] R. E. Callin, “Theory and design of wide-band multisection
quarter-wave transformers,” Proc. IRE, vol. 43, p. 179, 1955.

[4] S. B. Cohn, “Optimum design of stepped transmission-line trans-
formers,” IRE Trans. Microwave Theory Tech., vol. MTT-3, p. 16,
1955.

[5] H. J. Riblet, “General synthesis of quarter-wave impedance trans-
formers,” IRE Trans. Microwave Theory Tech., vol. MTT-5, p. 36,
1957.

[6] C.S.Gledhill and A. M. H. Issa, “Exact solutions of stepped impedance
transformers having maximally flat and Chebyshev characteristics,”
|EEE Trans. Microwave Theory Tech., vol. MTT-17, p. 379, 1969.

[7] S. J. Orfanidis. (2003) Electromagnetic Waves & Antennas. [Onling].
Available: http://www.ece.rutgers.edu/~orfanidi/ewa



	MTT025
	Return to Contents


